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Abstract-Crack problems are formulated for solids characterized by a pure power hardening relation
between the stresses and the strains. For such problems there are simple functional relationships between the
amplitude of the dominant crack-tip singularity, as measured by the path-independent I-integral, and the
applied load, the load point displacement, and the crack opening displacement. The solutions are valid for
both incremental and deformation theories of plasticity; they also apply to problems involving steady-state
creep. Numerical results are presented for the center-cracked strip of finite width under plane strain
conditions. A preliminary discussion is given of the applicability of the solutions to large scale yielding
fracture mechanics.

INTRODUCTION

The near-tip field at a stationary crack in an elastic-plastic strain hardening material is
characterized by a single parameter when the stress field at the crack tip is either symmetric or
antisymmetric with respect to the crack and when plane stress or plane strain prevails. Within the
context of a small strain deformation theory of plasticity, the amplitude of the dominant
singularity governing the stress and strain fields at the crack tip is directly related to Rice's[l]
path-independent J-integral, and J can be used as a convenient measure of the strength of the
dominant singularity. The potential of this measure in developing a large scale yielding fracture
criterion has been demonstrated in a recent series of tests performed by Begley and Landes [2, 3].

For power hardening materials, in which the plastic strain is proportional to the stress raised
to a power, the dominant singularity has been studied in some detail[4,5]. When small scale
yielding pertains, J is related to the elastic stress intensity factor by a simple formula. For large
scale yielding, J cannot be calculated simply, in general, since it depends in a complicated way on
the geometry, load level and nonlinear stress-strain behavior. Notwithstanding, relations between
J and such quantities as the crack opening displacement, the load point displacement, and the
applied load are required in the implementation of this approach to the fracture analysis of test
specimens and cracked bodies in general.

In their pioneering tests, Begley and Landes [2,3] used an experimental compliance procedure
to obtain the relation between J and the load point displacement. More recently, a relatively
simple approximate method for estimating the relation between J and the load point displacement
has been proIX>sed[6]. This method extrapolates from the small scale yielding range into the fully
plastic range using Irwin's plasticity adjustment of the elastic predictions together with results
based on a perfect plasticity analysis. Extensive numerical calculations using finite element
methods, such as those reported in [7-10], look promising for large scale yielding analysis, but at

tThis work was supported in part by the Air Force Office of Scientific Research under Grant AFOSR-73-2476, in part by
the Advanced Research Projects Agency under Contract DAHCI5-73-G-16, and by the Division of Engineering and Applied
Physics, Harvard University.
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least one drawback of such calculations is that they must be repeated for essentially every
variation in material property or configuration.

Fully plastic crack problems are formulated in this paper for materials whose stress-strain
behavior is taken in the form of a pure power hardening relation of the form considered by
Ilyushin [11]. For such problems there is an extremely simple functional relationship between J
and the applied load or any displacement quantity. The simple form of these solutions suggests
that they may prove useful for taking into account strain hardening in extrapolation procedures
such as that mentioned above, in addition to providing insight into behavior under fully plastic
conditions. Another attractive feature of the fully plastic crack problems is that for applied loads
which are monotonically increased the solutions are rigorously valid for both deformation and
incremental theories of plasticity. Numerical results are presented for the tensile loading of a
center-cracked strip under plane strain conditions.

FORMULATION OF FULLY PLASTIC CRACK PROBLEMS

A small strain formulation of plasticity theory will be used in which the strain-displacement
equations and equilibrium equations are the classical linear relations. A pure power hardening
relation between stress and strain is assumed so that in simple tension

(1)

where a is a dimensionless constant, and Eo and ao are reference values of the strain and stress.
(The connection ao = BEo, where B is Young's modulus, can always be made when convenient
but need not be introduced here.) With

the simplest deformation theory (J2 deformation theory) generalization of (1) is

(2)

Since Epp = 0, the material is inherently incompressible.
If boundary value problems based on (2) are considered where tractions are prescribed on all

boundaries, and if the directions of these tractions remain fixed while their magnitudes are
everywhere linearly proportional to a single load parameter, then as first shown by Ilyushin[ll],
the stress at each point in the body also varies linearly with the load parameter. There is no
change in the relative proportions of the stress components at each point and therefore the
solution is also rigorously correct for the incremental plasticity theory, J2 flow theory, when the
load parameter is monotonically increased. These conditions are clearly satisfied in crack
problems where the crack is traction-free and either where tractions on outer boundaries are
prescribed proportional to a single parameter or where constant stress condtions are approached
at infinity.

In this paper attention is directed to plane strain problems (E33 = 0) for Mode I, where the
stress field is symmetric with respect to the crack. In this case the stress, strain and displacement
fields (')f the dominant singularity at the crack tip have the form
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where r is the distance from the crack tip and 8 is the angle measured from directly ahead of the
crack. The dimensionless functions ali(8), 0'.(8), ul (8) and EI,(8) depend on the strain hardening
exponent n and have been given in [4]. The plastic stress and strain intensity factors, Ku and K.,
are connected by K. = (Ku )". These amplitudes are given definite meaning by normalizing the
maximum value of 0'.(8) to be unity.

With the strain energy density defined as

the path-independent J-integral for plane problems is given by [1]

(4)

where the crack is taken to lie along the Xl axis and r is any contour surrounding the crack tip.
The plastic intensity factors are related to J by

(5)

where values of the numerical constant In are given for a range of n in [4].t
With a slightly different interpretation the above formulas apply directly to steady, or

secondary, creep. For a creep law of the form dEo = a(a/ao)" in tension, generalized to
multiaxial states by

. 3 ( )"-1Eij = -a a. Sij,

Eo 2 ao ao

the previous formulas all continue to hold if the strain-like quantities, Eij and K., are replaced by
their rates, Eij and K., and Uj is replaced by Ui. Now W is the strain-rate potential and J continues
to play the role of the single parameter characterizing the near-tip stress and strain-rate fields.
Thus, from (5), the amplitude of the singularity of the strain-rates at the crack tip is

The strain-rates are given by (3) and the 8-variations Eij(8) remain unchanged.
The center-cracked strip under plane strain conditions is studied in some detail in this paper.

The crack is of length 2a and is centered in a strip of width 2b which is considered to be infinite in
extent in the direction normal to the crack (see insert in Fig. 1). For Ix21 ..... 00 the in-plane stresses
approach a22 = a~ and au = al2 = O. The edges XI = ±b are taken to be traction-free.

tSince r has length dimensions in (3), (Ku)" +1 = (K.)'n+I)'n has dimensions of length. If instead, r is taken to be
dimensionless, for example the distance from the tip normalized by the half crack length a, then Ku and K. are also
dimensionless, and in place of (5) one has J = mToEoaKuK.ln.
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Fig. I. Curves of J and S normalized withrespectto t~ or O'~ as afunction of 1/n for constant values of alb.

The stresses are linearly related to the applied tractions in a traction boundary value problem
in which the material is characterized by (2), as discussed in [11]. The easiest way to see this for a
plane problem is to imagine the compatibility equation expressed in terms of a stress function via
(2). The resulting equation is homogeneous of degree n in the stress function; and consequently if
a given stress field is a solution, then so is any mUltiple of this same field. It follows then that the
functional form of the solution to the fully plastic crack problem is:

ml/ao= (a~/ao) a/j(xla,alb,n)
Eil/Eo= a (a~/ao r E/j(xla,alb,n)

u,/(Eoa) = a(a~/aor ui(xla,alb,n).
(6)

In particular,

J= aaoEoa(a~/aor+lJ(alb,n)
8 = aEoa(a~/ao r 5(alb,n)

(7)

where 8 = U2(X 1 =0,X2 =0+) - U2(X 1 =0,X2 =0-) is taken here to be the crack opening
displacement at the center of the crack. The dimensionless functions topped by n are
independent of the applied stress a~ and depend only on the parameters alb and n and, in the
case of the field quantities, on the non-dimensional coordinates xla. It follows from the character
of this solution, as expressed by the first equation in (6), that the stress history is proportional at
each point so that the solution is valid for J2 flow theory as well as for J2 deformation theory.
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It is also convenient to introduce the strain approached as IX21~ 00. Since plane strain is
invoked, for IX21~00

and from (2),

all ~O, a22~ a~, a33~!a~,a. ~ v/a~,

E33 = 0, E22 = -Ell ~ E~ (8)

(9)

where a~ is considered to be positive.
A finite element method employing a singular crack tip element was used to calculate the

quantities cJij, J, etc. for a wide range of values of alb and n. The finite element calculation is
complicated by the fact that the material is fully nonlinear and incompressible. The method used
is discussed in some detail in the Appendix. We proceed directly to present the results of the
calculations in the following section.

NUMERICAL RESULTS FOR THE CENTER-CRACKED STRIP

Normalizations of J and 5 which follow from (7) and (9) are

J J (a )
-lin (€~)(n+I)ln = (v'3)(n+I)/"(v'3 a~)"+1 =/1 b' n (10a)

a aoEoa - aaoEoa -2 -2 -
Eo ao

and

(10b)

where /1 and h are non-dimensional functions of alb and n. Calculated values of /1 and h are
given in Table I for combinations of four values of aIb and six values of n ranging from 1 to 7.
Over this range of the parameters, values of the non-dimensional combinations in (10) vary by
three orders of magnitude as can be seen in the plots of their logarithms as a function of lIn in
Fig. 1. Both quantities are unbounded as aIb~ 1 for fixed n and are unbounded as n ~ 00 for fixed
alb. Cross-plots are shown in Fig. 2.

Before considering normalizations which are more suitable than (10), we will present an
appropriate normalization of J in terms of the crack opening displacement at the center of the
crack 5. This relation is of some interest, particularly in fracture toughness testing[12]. The
relation is known for the limit n ~ 00 from the limit analysis of a rigid perfectly plastic
center-cracked strip [6]. In this limit,

J = (2/v'3)ao 5

for all values of alb. In the limit of linear elasticity, n = 1, the normalization

J

-I (b) ( 5 )2a aoEoa b - a 2E
o
a

(11)

(12)
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Table l.t

~ n= 1 n= 1·5 n= 2 n= 3 n= 5 n= 7

I, = 47T/3t
I, = 2·0t

alb ...0 1,=7T/3t I, = 1·25§ 1·37§ 1·50§ 1·64§ 1·76§
I. =-

Is = 47T/3t
16 =2·0t

I, =4-23 4·97 5-46 6·02 7·08 8·15
1,= 1·92 2·22 2·45 2·77 3·30 3·74

alb =1/8 I, = 1·00 1·20 1·33 1·48 1·65 1·77
I. =0·100 0·129 0·154 0·211 0·314 0·408
Is =3·70 4·07 4·18 4·04 3-63 3-20
16 =1·68 1·82 1·87 1·86 1-69 1·47

I, = 4·59 5090 7·07 9·30 14·58 22-06
I, =2-01 2·44 2-87 3-73 5·76 8·60

alb =1/4 I, =0·855 1·10 1·26 1·46 1-69 1·81
14 =0·197 0·253 0·307 0·405 0·572 0·681
Is =3·44 3-83 3-98 3-92 3-46 2·94
16 = 1·51 1·58 1·61 1·57 1·37 1·15

I, =6·24 9·28 13-03 24·26 80·08 264·3
I, =2·31 3·11 4·12 6·97 20·41 62-80

alb =1/2 I, =0·586 0·882 1·10 1·45 1·87 2·11
14 =0·396 0·493 0·580 0·719 0·887 0·959
Is =3·12 3·28 3·26 3-03 2·50 2·06
I. = 1·15 1·10 1·03 0·872 0·638 0·491

11 = 10·92 20·73 37-28 119·2 1273·0 14040·0
I, =2-92 4-61 7·26 19·34 170·1 1749·0

alb =3/4 I, =0·321 0·645 0·952 1·45 2·03 2·27
I. =0·597 0·726 0·821 0·932 0·992 0·999
Is =2·73 2·59 2·33 1·86 1·24 0·857
16 =0·729 0·576 0·454 0·302 0·116 0·107

iExact value
§Extrapolated value
tLimiting values for n= 1, alb ... 1are I, = 0and Is = 167T/[3(7T' - 4)]. Limiting values

for n =00 are I, =4/V3 and 14 =1·0, for all alb.

leads to a finite limit as aIb ~ 0 and to a zero limit as aIb ~ 1. The choice

0'.' (/f( 8 f'" ~ f,(*, n) (13)

ex UoEoa b - a 2Eoa

is consistent with (11) and (12) and with the general functional form (7). Calculated values of h
are given in Table 1, and are plotted in Fig. 3. Throughout the paper an extrapolated section of a
curve in any figure is indicated by a dashed line. In particular, the sections of the curves in Fig. 3a
for n > 7 are extrapolated to the limiting value for n = 00, h = 4/v'3, which is known exactly from
(11). The curve for alb ~O is obtained from extrapolations to this limit shown in Fig. 3b. The
temptation to extend the curves in Fig. 3b to alb = I has been resisted because of uncertainty as
to the validity of the geometric singularity [b I(b - a )]'/n introduced in (13).
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Curves showing the displacement normal to the crack normalized by 8/2 are shown in Fig. 4a
for alb == 1/2 for several values of n. These curves are independent of (J'~/(J'o. Under fully plastic
conditions for n greater than about 5, the crack opening displacement at the center of the crack is
a good approximation to the opening displacement all along the crack, except right at its ends.

Consider a strip of length 2h in the X2 direction, as shown in Fig. 4b, and let (J'Z2 == (J'x be
applied on X2 == ±h. Define d to be the load point displacement,

(14)

through which the applied stress does work. In the limit n ~ 00, corresponding to rigid perfect
plasticity, the deformation is confined to the four 45° shear bands depicted in Fig. 4b, as has been
discussed in [13]. In this limit, d == 8, independent of h, as long as h is greater than b - a.
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Fig. 4. (a) Crack opening profiles and (b) Geometry for finite length strip showing the slip lines for the rigid
perfectly plastic limit.

However, for finite values of the strain hardening exponent, d is not independent of the strip
length for a given (J'~, but increases essentially linearly with h once h is sufficiently large
compared to a or b - a, whichever is relevant. For an uncracked strip of length 2h subject to an
applied stress (J'~, the load point displacement is

(15)

where f ~ is given by (9). Define a residual load point displacement d R to be

(16)

For sufficiently large h, d R is essentially independent of h; for n ~ 00, d R == d == 8. For a finite
value of n and a given applied stress (J'''', d can be obtained from (16) if dR is known.

The relationship between d R and 8 is shown in Fig. 5. As discussed in the Appendix, the
values of hib chosen in carrying out the calculations were sufficiently large to ensure that the
values of dR presented are the limit values for h ~ 00, within the accuracy of the numerical
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Fig. 5. Ratio ofresidualload point displacement to crack openingdisplacement at centerof crack.

method. Values of -the function /4. where

583

(17)

are given in Table 1. While ~R = 5 in the limit of perfect plasticity (n = 00), a very small amount of
strain hardening significantly alters this relation when alb is less than about 1/2. An expression
for J in terms of ~R can be obtained simply by using (17) to eliminate 5 in (13).

It is a more delicate matter to choose a suitable normalization of J with respect to e~ or (T~.

The normalizations (0) used in Figs. 1 and 2 do not incorporate any alb dependence and this
leads to a very strong dependence of /. and h on alb. For linear elasticity (n = 1) a normalization
of the form

J
(8)

has finite limits for alb ~O and for alb ~ 1 which are known exactly[14].
The net section stress acting across the ligament on either side of the crack is

O"net = (T~bl(b - a). The following limits are approached as n ~oo in the ligament regions on
either side of the crack:
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From (7), J is proportional to stress raised to the (n + I)th power. Tentatively consider a
normalization based on the net ligament stress, i.e.

J

(
Y3 Unet)n+l

aUoEoa T~

J

(
_b)n+I(Y3 u~)n+1

aUoEo b 2-a U o

(19)

which clearly is consistent with the general functional form of the solution (7). To bring (19) in
line with (18) for n = 1, multiply it by bl(b - a). Also divide (19) by (y3/2)(n+l)/n to arrive atthe final
form of the normalization to be used in this paper

J J

(
_b)n(y3)(n+l)/n(y3 u~)n+l = -I/n (_b )n(E~)(n+I)/n:=Is(alb, n).

aUoEoa b 2 2 a UoEoa b- a U o - a Eo

The normalization for the crack opening displacement is taken to be

81(2Eoa) 81(2Eoa)
a(_b)n y3(y3 U~)n = (_b )n(E~) = Ualb. n).

b - a 2 2 Uo b - a Eo

(20)

(21)

Numerical values for Is and 16 are included in Table 1and are plotted as solid lines in Fig. 6.
These normalizations are clearly successful in scaling the curves. They emphasize the

extremely strong influence of geometry on the relation between J and the stress or strain at
infinity when n is large. However, they do not permit an extrapolation to values of n greater than
about 10, corresponding to low strain hardening. Neither do they permit an accurate
extrapolation to alb = 0, the limit of a finite crack in an infinite body.

Some closely related results for the fully plastic problem in anti-plane shear (Mode III) are
available. Amazigo[15] considered a finite crack of half-length a in an infinite body. A pure
power hardening law analogous to (1) was assumed, i.e.

and was generalized using the analog of (2). The results of Amazigo's exact solution to this
problem are displayed in Fig. 7. The functional form of the solution is the same as in (7) with
a Ib = O. For large n Amazigo found

J 8
l/n a( ~I )(n+l)/n ==-~==O(yn)

a 70 'Yo 'Y 'Yo a'Y
(22)

where here the crack opening displacement 8 is taken as the relative displacement of the two
faces of the crack at its center. The relation of J to 8 approaches the perfect plasticity result
J = 70 8 as n ~ 00, as can be seen in Fig. 7b. This curve is very similar to the corresponding curve
(a/b~O) in Fig. 3a for the plane strain problem.

The curves of Fig. 1 indicate unbounded behavior. On the other hand, the normalizations (10)
and (21) plotted in Fig. 6 appear to be heading to zero as n ~ 00 for each fixed, non-zero value of
alb. This is due to the geometric factor [b I(b - a)]" used in (20) and (21) which, for any non-zero
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value of alb, appears to dominate the normalizations for large n. Guided by the anti-plane shear
results and the above observations, we speculate that the dotted curves in Fig. 6 represent the
qualitative behavior for the limiting case alb -+ O. Additional attempts to extrapolate the
numerical results using normalizations which incorporated large n behavior, such as in (22), did
not meet with success. The fact that it did not prove possible to extrapolate the results much
beyond the range in which numerical calculations were made is not entirely surprising. Even in a
much simpler problem of this type-the axisymmCiltric deformation around a hole in a sheet
subject to biaxial tension-where an exact solution has been found [16], the functional
dependence on n alone is quite complicated.

In summary, we feel confident that the curves relating J to S of Fig. 3, including the
extrapolations, are accurate to within a few per cent. In contrast, we were not able to extend the
relation of J to E~ (or S to E~) to values of n much greater than the largest computed value, n = 7;
nor could this relation be extended to the limit alb = 0 with acceptable accuracy.

IMPLICAnONS FOR FRACTURE AN AL YSIS

In testing for the critical value of J under plane strain conditions, Jre , the methods used to date
involve the experimental determination of the value of some displacement quantity associated

8as Vol. 11 No. S-E
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Fig. 7. Results for the finite crack in an infinite body under anti-plane shear (Amazigo [15]).

with the onset of plane strain fracture. Assuming the dependence of J on this displacement
quantity is known, JIe can then be obtained. The load point displacement has been used for this
purpose. Various crack opening choices have also been used. As mentioned in the Introduction,
an attractive, relatively simple procedure has been proposed [6], which makes use of rigid
perfectly plastic results for cracked bodies, to extrapolate predictions from the small scale
yielding range into the large scale yielding range. Fully plastic solutions, such as those discussed
here, can be employed in carrying out this extrapolation when strain hardening is significant.

To illustrate the extent to which strain hardening can be expected to influence the relation
between J and 5 in the fully plastic range, consider a finite crack of half-length a in an infinite
body. Take 5 to be the crack opening displacement as defined in this paper. According to the fully
plastic solution (13)

(23)

where h(O, n) is the ordinate of Fig. 3a for the curve alb = 0. For n -+ 00, (23) reduces to the
perfect plasticity result J =2uoll/v'3. Curves of J/(uoEoa) as a function of ll/(2Eo a) calculated
from (23) with a = 1 for n = 3, 10 and 00 are shown in Fig. 8a. The extrapolation method of [6]
makes use of the slope of the J -5 relation, dJld5, rather than the relation itself, and Fig. 8b
shows the extent to which this slope depends on n. Using (23),

dJld5 = a-tin v'3(n + l)NO, n) (_5_)l/
n

•

2uo1v'3 4 n 2Eoa
(24)
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For alb = °and a = 1, the effective stress at infinity reaches (To, corresponding to complete
yielding in an actual situation, when, from (9), E 00 = V(3) Eo 12. Thus from Fig. 6b. the
corresponding value of 81(2Eo a) will be greater than approx. 2. One can conclude from the curve
for n = 10 in Fig. 8a that, as long as n :2: 10. the 1- 8 relation is closely approximated by the
perfect plasticity prediction in the range 2 < 81(2Eo a) < 10. The perfect plasticity prediction for
dlld8 differs from the n = 10 results by no more than 10 per cent in this same range. For a high
strain hardening material as typified by n = 3, the discrepancy is considerable.

Under conditions of constrained plastic deformation the overall strain at fracture may be of
primary interest. For example, suppose a crack is sufficiently small such that fracture initiation
does not occur before the region surrounding the crack becomes fully plastic. Then it may be of
interest to ask how large must the "applied" or overall strain be for I to reach lIe. For a crack of
length 2a in an infinite body under fully plastic plane strain conditions. (20) gives

I
(

OO)<n+I)ln
--= a-lin /5(0, n) ~ .
(ToEoa Eo

(25)

where NO, n) is the ordinate of Fig. 6a for the curve a Ib = 0. (As n ~ 00, /5(0, n)~ 00; even in the
range 3 < n < 7 no claim is made for the accuracy of this curve, as previously discussed.) Solving
(25) for the critical applied strain Ee

oo
in terms of lIe gives

EeOC [ aI/nIle ]n/<n+1)

;,: = NO, n)(To Eoa . (26)

For all but extremely high strain hardening, the exponent nl(n + 1) is almost unity, so the critical
strain varies essentially as the inverse of the crack length in the fully plastic range.

To continue the illustration, consider the pressure vessel steel, A553B, used in the
Begley-Landes tests [2] for which a lIe of approximately 1000 in-lbs/in2 was found. Identify (To

with the 0·2 per cent offset yield stress, 70 ksi, Eo with the associated yield strain 2·3 x 10-\ and
take n = 14, corresponding to the strain hardening exponent of the metal. As a rough estimate for
a finite crack in an "infinite" body (alb = 0) use the value /5(0, 14) == 6. With a lin == L (26)
predicts that the applied strain at fracture initiation EeOC will exceed the yield strain Eo for all
cracks which have a half crack length of approximately one inch or less.

CONCLUDING REMARKS

The fully plastic solutions for the pure power hardening material have the property that the
stress history at each point is proportional and, as previously emphasized, represent exact
solutions to 12 flow theory and 12 deformation theory. In general this will not be true, for example,
for a solid characterized by a piecewise power hardening tensile stress-strain curve, made up of
linear and nonlinear portions.

There are several possible ways to use the fully plastic strain hardening solutions to
extrapolate behavior for small scale yielding to large scale yielding, based on realistic tensile
stress-strain curves involving both elastic and plastic strains. The method proposed by Bucci et
al. [6] for elastic perfectly plastic solids is one of them. A discussion of this subject will be taken
up in a subsequent paper.

For the center-cracked strip, the relation between the amplitude of the dominant singularity J
and the applied stress (Too or the applied strain E

oc is highly sensitive to the hardening exponent n
and to the geometric parameter alb. As has been discussed earlier, there are important gaps in the
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relationship which remain to be computed accurately. particularly in the range of low strain
hardening. It should be noted, however, that for steady-state creep applications the range of n of
interest has been covered.
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APPENDIX

In this Appendix, some of the features of the numerical method will be discussed. Further
details are presented[l7].

The incompressibility of the material leads to a simplified analytical formulation but
complicates the numerical procedure. After careful consideration of several possible ways to
treat the incompressible plane strain problem, including the use of Lagrangian multipliers and the
use of a displacement potential, an extrapolation technique was chosen because it appeared, at
least at the outset of the investigation, to be the most economical approach. In this method,
compressibility was introduced in a nonlinear manner in order to preserve the pure power
hardening nature of the constitutive relation. The generalized stress-strain relation (2) was
modified as

(AI)

where Uk == V(uik) = IUkkl, and {3 is a positive parameter used to adjust the level of
compressibility. In simple tension (AI) reduces to E lEo = (uluo)"(a +1/3 (3). The incompressible
limit will be attained by extrapolion to {3 = O.
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The nonlinear stress boundary value problem was formulated in terms of the variational
principle of minimum potential energy, and solved numerically by a finite element method which
makes use of a singular crack tip element. This procedure, similar to the one developed in [7],
involves embedding the dominant singularity solution (3) into a finite element grid using a singular
tip element centered at the crack tip. The singular element or core region, of radius rl with
boundary r .. must be sufficiently small for the asymptotically correct dominant singularity
solution to accurately represent the near-tip behavior. The displacements at the nodes on rJ, from
(3), are

K 1/(n+l) - (8) + ilUi = aEo .rl U1. UoUil (A2)

where a rigid-body translation parameter Uo must be included to allow for horizontal
displacement of the crack tip and core region. The finite element method was used to describe the
solution outside the core region and conventional constant strain triangular elements were
employed.

The two-dimensional potential energy functional is defined by

n = f W dA - r T.Ui ds
A JST (A3)

(A4)

where W is the strain energy density, and ST is the portion of the boundary on which the
tractions Ti are prescribed.

Symmetry conditions permit consideration of the first quadrant of the body and the potential
energy per unit thickness of this region can be constructed as

M lbn = Uc + 2: U(k) - a~ U2(X .. h )dxl
k-I 0

where U c and U(k) represent the strain energies per unit thickness of the core region and of
element (k), respectively, and M is the total number of elements in the grid pattern.

From the dominant singularity solution, Uc can be calculated as

U = E _n_ K (n+l)/n r'" [-(8)]n+l d8
c aao

0 n +I' rl Jo a.

The strain energy in the kth element U(k>, calculated from (Al) is

[ ( )
(n +Il/n I ()(n+Il/n]

U(k) = aoEo n : I a -I/n :: +3' {3-Jin :: Ak

where

e. =~(j eijeil) =aa.
n

eh =v'Eik = {3ah
n

(A5)

(A6)

and Ak is the area of the element. The energy in the core was calculated using the singularity
fields for the incompressible material rather than (AI). Numerical experimentation for the linear
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elastic case (n = 1), using an incompressible core element in one case and a proper compressible
core element consistent with (AI) in another, indicated that the extrapolated results for the f3 = 0
limit were essentially the same. The differences were considerably smaller than errors inherent to
the grid of the finite element method. The procedures for treating the boundary traction integral
in (A4) and the zero displacement boundary conditions, were straightforward and will not be
commented upon.

The undetermined parameters of this formulation are K. and Uo , associated with the singular
tip element, and the displacements Urn (m = 1-2N) of the N nodal points which do not lie on fl.
Minimizing the potential energy functional with respect to these parameters yields the following
governing system of nonlinear equations:

an an an
aK =O'-a =O'-a' =0.

• Uo Um
(A7)

This nonlinear system was solved iteratively by Newton's method. The symmetric, banded,
linear system of equations for the corrections 5K., 5uo and Mm, was solved by a Gaussian
elimination scheme employing triangular decomposition. Because of the highly nonlinear nature
of the problem, convergent solutions for n 2= 2 were best obtained by adding only a fraction of the
calculated Newton increment to the previous guess solution at each stage of the iterative process.
The initial displacement solution used in the Newton process was taken to be the linear elastic
solution corresponding to n = 1. It was convenient to obtain solutions for successive increasing
values of n by using the preceding solution as the starting point. Similarly, for constant n,
solutions were obtained for decreasing values of f3. Calculations using hardening exponents
above seven required progressively more iterations to obtain convergence, and, in addition, there
was evidence that the accuracy of the method was deteriorating.

Numerical experimentation based on the linear elastic problem was used to check the
accuracy of the overall method, to experiment with various grid networks, and to make
appropriate choices of grid parameters such as the core radius and the strip length. There was no
difficulty in obtaining the strain intensity factors for the incompressible problem by linearly
extrapolating to f3 =O. Since the stiffness matrix with f3 =0 is singular, the calculation procedure
broke down due to round-off error as f3 approached this limit, but this problem was bypassed by
the extrapolation. The solutions for K. extrapolated to the incompressible limit agree to within
four per cent with the values given in [14], which are claimed to be accurate to one per cent.

Solutions were obtained for combinations of four crack length to specimen width ratios,
alb = 1/8,1/4, 1/2 and 3/4, and six values of n ranging from 1-7. Computations were performed
with a grid pattern consisting of 736 elements, 400 nodal points, 13 nodes on L, and a value of 'I
typically equal to 2·5 per cent of the half crack length. The strain intensity factor was found to be
relatively insensitive to the vertical dimension for hIa ~ 5, and this value is consistent with
values reported in the literature.

The same grid was used in the nonlinear cases. For each alb ratio considered, hlb ~ 1- alb,
which ensured that results were independent of h in the limit n = 00. It became progressively
more difficult to carry out extrapolations to f3 = 0 as n increased, and it is felt that in general, the
accuracy achieved for large n is not quite as good as in the linear elastic cases.

The most unsatisfactory aspect of the numerical procedure, in retrospect, was the difficulty
involved in extrapolating to the incompressible limit. It may well be that other methods, such as
those mentioned earlier, would prove to be better suited to the numerical analysis of this class of
problems, and these should be explored.


